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Transport integrals V „ l ,s…
„T… for binary collisions of open-shell atoms

with uncertain interaction potentials

Joseph A. Kunc
Department of Aerospace Engineering and Department of Physics, University of Southern California,

Los Angeles, California 90089-1191
~Received 7 January 1998!

General analytical expressions for the transport collision integralsV ( l ,s)(T) for binary collisions of atoms
that can interact through many different~repulsive-attractive as well as repulsive! potentials are derived. The
integrals allow one to calculate the transport coefficients~viscosity, thermal conductivity, and ordinary and
thermal diffusion coefficients! in gases dominated by collision systems driven by poorly understood multiple-
force interactions. The approach is used to calculate the transport integrals for several collision systems, and
the results are compared with the detailedab initio calculations available for some well understood open-shell
systems.@S1063-651X~98!08810-2#

PACS number~s!: 52.25.Fi, 51.30.1i, 47.90.1a, 34.50.2s
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I. INTRODUCTION

Transport coefficients~viscosity, thermal conductivity
and ordinary and thermal diffusion coefficients! of weakly
ionized gases and their mixtures can be obtained from
transport collision integralsVm-m

( l ,s) andVm-n
( l ,s) for all the binary

collisions between the identical (m-m) and different (m-n)
particles present in the gas~see Refs.@1–4#, and references
therein!. The transport integrals for a binary collision can
calculated from the deflection function of the collision sy
tem if the interaction potential and the distribution of t
impact energies of the colliding particles are known. T
classical deflection function of a binary collision with impa
energyE and impact parameterb in the field of a central
potentialU(r ) is @2#

x~g,b!5p22bE
r m

` dr

r 2A12b2/r 22U~r !/E
, ~1!

where E5mg2/2, m and g are the reduced mass and t
relative speed of the particles, respectively,r is the distance
between the particles, andr m is the distance of the closes
approach of the particles. Subsequently, thel th-moment col-
lision cross section is

Q~ l !~g!52pE
0

`

@12cosl x~g,b!#b db, ~2!

and the corresponding transport integrals for collisions in
which is not far from local thermal equilibrium at temper
ture T, and which is dominated by the binary collision
driven by the potentialU(r ), are

V~ l ,s!~T!5S kT

2pm D 1/2E
0

`

e2g2
g2s13Q~ l !~g!dg, ~3!

whereg25mg2/2kT.
The transport integrals~3! apply to collision systems o

two particles which interact through a single potentialU(r ).
However, in many collision systems common in applic
PRE 581063-651X/98/58~4!/4960~7!/$15.00
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tions, the particles can interact~with different probabilities!
through many different, both repulsive-attractive and rep
sive, potentials~see Fig. 1!. ~For example, two ground-stat
oxygen atoms can interact through 18 different potentia!
The transport integralsV ( l ,s) for such collisions must be sta
tistically averaged over all the potentials possible in the c
lisions, and these average values should be used in calc
tions of the corresponding transport coefficients of the ga
The average transport integrals can be written as

^V~ l ,s!~T!&5S (
i 51

i m

pi D 21

(
i 51

i m

piV i
~ l ,s!~T!

1S (
j 51

j m

pj D 21

(
j 51

j m

pjV j
~ l ,s!~T!, ~4!

FIG. 1. Examples of potentialsUi , j (r ) occurring in multiple-
force collisions of two atoms. Only the three lowest (i 51,2,3)
repulsive-attractive potentials and the three lowest (j 51,2,3) repul-
sive potentials are shown.s is the zero-potential distance ande is
the well depth of the lowest,Ui 51(r ), repulsive-attractive potential
4960 © 1998 The American Physical Society
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where subscriptsi and j denote the repulsive-attractive an
repulsive potentials, respectively, and where the first sum
the right-hand side is taken over all (i m) repulsive-attractive
potentials and the second sum is taken over all (j m) repulsive
potentials possible in the binary collision under consid
ation; pk /(kpk is the probability that the collision will be
driven by thekth potential, andpk is the electronic degen
eracy of the diatom representing the binary collision driv
by thekth potential.

The integrals~4! with ( l ,s)5(1,1), ~1,2!, ~1,3!, and~2,2!
allow one to calculate~using, for example, the Chapman
Enskog transport theory! all basic second-order transport c
efficients in gases not far from local thermal equilibrium
The main objective of this work is to develop a general a
proach to find analytical estimates for the average collis
integrals ~4!, including the multiple-force collisions wher
many different interaction potentials are possible but the
formation about the potentials is very limited. Such a situ
tion is common in many applications of high-temperatu
gases.

II. THE TRANSPORT INTEGRALS
FOR REPULSIVE-ATTRACTIVE INTERACTIONS

Most of the repulsive-attractive potentials that occur
the binary collisions under consideration cannot be appr
mated with high accuracy in the entire range of interact
distance by a simple mathematically convenient function
addition, some of the potentials can have one~or more! local
maximum. Since the fraction of the latter potentials is u
ally small, and since the magnitudes of the well depths
the distances at which atom-atom potentials are zero are
dominating factors in the dynamics of the binary collision
we ignore the potentials with the local maxima and appro
mate the repulsive-attractive potentials by the Lennard-Jo
~12,6! potentials ~see the discussion in Sec. VI!. Conse-
quently, thei th repulsive-attractive potential with well dept
e i and the zero-potential distances i is

Ui~r !54e iF S s i

r D 12

2S s i

r D 6G . ~5!

Most of the repulsive-attractive curves in multiple-force c
lisions of neutral atoms can be approximated, with accur
acceptable in applications, by the potential~5!.

The cross sections~2! for a binary collision with impact
velocity g and driven by a single (i th) potential~5! can be
given as@2#

Qi
~ l !~g!52ps i

2I x
~ l !~g* !, ~6!

where

I x
~ l !* ~g* !5E

0

`

@12cosl x~g* ,b* !#b* db* , ~7!

g* 25mg2/2e i , ~8!

and

b* 5b/s i . ~9!
n

-

n

.
-
n

-
-

i-
n
n

-
d
he
,
i-
es

y

The transport integrals for collisions driven by thei th
potential~5! at temperatureT are

V i
~ l ,s!~T!5ps i

2S kT

2pm D 1/2

I g
~ l ,s!* ~Ti* !, ~10!

where

I g
~ l ,s!* ~Ti* !5

2

Ti*
s12 E

0

`

e2g* 2/Ti* g* 2s13I x
~ l !* ~g* !dg* ,

~11!

and

Ti* 5kT/e i . ~12!

The value ofkT in gases at temperatures below 10 000
is significantly smaller than the well depthse i of most of the
interaction potentials in the collision systems dominating
transport properties of gases common in applications.
reduced impact energyg* 2 in most such collisions is smalle
than 0.8, and the collisions are the ‘‘orbiting’’ collisions
their impact parametersb* are close to the correspondin
‘‘orbiting’’ impact parametersbo* ~see below!. Numerical
analysis in a broad range ofg* andb* showed that if such a
collision is driven by the potential~5!, then there are three
distinctive regions of the reduced impact parameterb* .

~1! b* is close to the orbiting impact parameter bo* . The
functions@12cosx(g* ,b* )# and@12cos2 x(g* ,b* )# oscillate
very rapidly with average values equal to one and one-h
respectively. The contribution of the functions to the int
grals~7! in the narrow region whereb* 'bo* is much smaller
than the contribution of the functions in the other regions
b* . Therefore the former contribution is neglected in t
following considerations.

~2! b* is greater than bo* . When b* is slightly greater
than bo* , the functions @12cosx(g* ,b* )# and @1
2cos2 x(g* ,b* )# are close to two and one, respectively, a
they both decrease very rapidly with increase ofb* . At val-
ues of b* not much greater thanbo* , the functions have
weak dependence ong* and their dependence onb* is al-
ways almost exponential,

12cosl x~g* ,b* !'~32 l !exp$220@~b* 2/bo*
2!21#%.

~13!

~3! b* is smaller than bo* . In this case, the maximum
value of the integrand@12cosx(g* ,b* )# equals two ~at
bo*

250 and atb* 2'bo*
2), and the position of the integran

minimum ~equal to zero! is weakly dependent ong* and is
close tobo*

2/2. In addition, theb* 2 dependence of the de
rivative of the integrand@12cosx(g* ,b* )# with respect to
b* 2 is always close to a parabolic function centered atbo*

2/2,

12cosx~g* ,b* !'
8

bo*
4 S b* 22

bo*
2

2 D 2

. ~14!

Analysis of theg* andb* dependences of the integran
@12cos2 x(g* ,b* )# can now be simplified by use of the re
lationship~14! in conjunction with the fact that@12cos2 x#
5(12cosx)@22(12cosx)#. As a result, one obtains
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4962 PRE 58JOSEPH A. KUNC
12cos2 x~g* ,b* !516S b*

bo*
D 2

280S b*

bo*
D 4

1128S b*

bo*
D 6

264S b*

bo*
D 8

. ~15!

Using relationship~15! and neglecting small quantities, th
integrals~7! can be written

I x
~1!* ~g* !5E

0

`

@12cosx~g* ,b* !#b* db*

.
8

bo*
4 E

0

bo* @b* 22~bo*
2/2!#2b* db*

12E
bo*

2bo* exp$220@~b* 2/bo*
2!21#%b* db*

5
23

60
bo*

2, ~16!

and

I x
~2!* ~g* !5E

0

`

@12cos2 x~g* ,b* !#b* db*

.S 4
b*

bo*
D 2E

0

bo* @125~b* /bo* !218~b* /bo* !4

24~b* /bo* !6#b* db*

1E
bo*

2bo* exp$220@~b* 2/bo*
2!21#%b* db*

5
7

24
bo*

2. ~17!

We replaced the infinite integration limits in the expressio
~16! and ~17! by 2bo* for mathematical convenience. How
ever, the replacement is justified by the fact that the value
the integrands@12cosx(b* )# and @12cosx2(b* )# for b*
.2bo* are orders of magnitude smaller than the mean va
of the integrands in the interval 0<b* <bo* .

In the case of binary collisions driven by the potential~5!
and withg* 2 less than 0.8, the orbiting impact parameter
given in the limit of smallg* as

bo*
2.

13

4

1

g* 2/3. ~18!

Relationships~11! and ~16!–~18! allow one to obtain the
integralsI g

( l ,s)* (Ti* ) which are of interest in studies of tran
port coefficients in gases wherekT is less thane i . In par-
ticular,

I g
~1,1!* ~Ti* !5 5

4 G~ 8
3 !Ti*

21/3, I g
~1,2!* ~Ti* !5 5

2 G~ 11
3 !Ti*

21/3,
~19!

I g
~1,3!* ~Ti* !5 5

4 G~ 14
3 !Ti*

21/3,

I g
~2,2!* ~Ti* !5 15

16 G~ 11
3 !Ti*

21/3, ~20!
s

of

s

where G(x) is the gamma function of argumentx; G( 8
3 )

51.505,G( 11
3 )54.012, andG( 14

3 )514.711.
In a gas not far from local thermal equilibrium at temper

ture T, an overwhelming fraction of binary collisions hav
impact energiesE smaller than 3kT. In most of the
repulsive-attractive collisions discussed here, values ofkT
are much~or at least significantly! smaller than the collision
potential well depthse i , and consequently, the collision re
duced impact energiesg* 2 and the reduced speedsg* are
smaller than one. Thus our assumption that the well dep
of the repulsive-attractive potentials are substantially gre
thankT requires the upper limit of the integral in the expre
sion ~11! be not greater than one. However, taking, as
mathematical convenience, this limit infinite is justified b
the fact that the contribution of the integrals from the interv
1<g* <` is negligible@the values of the integrands in th
expression~11! are very small wheng* .1#.

The expressions and conclusions derived in this sec
can also be used for Lennard-Jones interactions where
<g* 2&1. This is because the dependences of the integra
@12cosx# and @12cos2 x# on b* andg* are similar to the
corresponding dependences for collisions withg* 2,0.8.
The fact that rapid oscillations of the integrands exist wh
b* 'bo* and g* 2,0.8 but are absent wheng* 2.0.8 has
little impact on the validity of the extension of the approa
of this section on the collisions withg* 2.0.8. This is be-
cause even though the amplitude of the oscillations chan
from zero to two~when l 51) and from zero to one~when
l 52), the interval of b* where it takes place is very
narrow—it is much smaller than the value of the orbitin
impact parameterbo* .

Expressions~10!, ~19!, and ~20! lead to the following
transport integrals for collisions of particles interactin
through the single-force potential~5! with e i.kT:

V i
~1,1!~Ti* !5 5

4 G~ 8
3 !S pkT

2m D 1/2

s i
2S e i

kTD 1/3

, ~21!

V i
~1,2!~Ti* !5 5

2 G~ 11
3 !S pkT

2m D 1/2

s i
2S e i

kTD 1/3

, ~22!

V i
~1,3!~Ti* !5 5

4 G~ 14
3 !S pkT

2m D 1/2

s i
2S e i

kTD 1/3

, ~23!

and

V i
~2,2!~Ti* !5 15

16 G~ 11
3 !S pkT

2m D 1/2

s i
2S e i

kTD 1/3

. ~24!

Taking the above into account and using the first te
of the relationship ~4!, the averaged collision integral
^V i

( l ,s)(T)& can be written as
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^V i
~ l ,s!~T!&5S (

i 51

i m

pi D 21

(
i 51

i m

piV i
~ l ,s!* ~Ti* !

5p f ~ l ,s!S kT

2pm D 1/2S (
i 51

i m

pi D 21

3(
i 51

i m

pis i
2S e i

kTD 1/3

, ~25!

where, as before, the sums are taken over all (i m) repulsive-
attractive potentials possible to occur in the collision,pi is
the electronic degeneracy of the diatomic state represen
the collision driven by thei th potential, and

f ~1,1!5 5
4 G~ 8

3 !51.881, f ~1,2!5 5
2 G~ 11

3 !510.030, ~26!

f ~1,3!5 5
4 G~ 14

3 !518.389, f ~2,2!5 15
16 G~ 11

3 !53.761.
~27!

Expression~25! can now be rewritten as

^V i
~ l ,s!~T!&5ps1

2f ~ l ,s!S kT

2pm D 1/2S e1

kTD 1/3

^S&, ~28!

where

^S&5S (
i 51

i m

pi D 21

(
i 51

i m H pi S s i

s1
D 2S e i

e1
D 1/3J . ~29!

The termpi /( i 51
i m pi in Eq. ~29! is the probability that the

diatomic state representing the collision is in thei th
repulsive-attractive state, that is, the probability that the s
interaction potential has the zero potential distances i and
well depthe i . Thus ^S& is the averaged~over all repulsive-
attractive states of the diatom! value of the product
(s i /s1)2(e i /e1)1/3.

The force constant for thei th Lennard-Jones interaction

ki
LJ5

d2Ui~r !

dr2 U
r 5r e,i

5
72e i

r e,i
2 , ~30!

where r e,i is the distance at the minimum of the potent
well depthe i .

The force constant for motion of the reduced massm in
the field of a harmonic potential is

ki
H5

4mp2ve,i
2

h2 , ~31!

whereh is Planck’s constant, andve,i is the spectroscopic
constant for the harmonic motion.

Since ki
LJ.ki

H when r→r e,i , the expressions~30! and
~31! give

r e,i

r e,1
.

ve,1

ve,i
S e i

e1
D 1/2

, ~32!

where the subscripti 51 denotes the properties of the lowe
repulsive-attractive potential for the collision system.
ng

te

l

Allen and Longair have suggested@5# the following ap-
proximate rule for the electronic states of most diatomic s
tems:

ve,i r e,i
3 ni

1/2'const, ~33!

whereni , called ‘‘group number,’’ depends on the period
group classification of the interacting atoms~the particular
rows in the periodic system in which the atoms appear! and
on the diatom electronic configuration. Using the rule in t
relationship~32! one obtains

r e,i

r e,1
5

s i

s1
5S n1

ni

e1

e i
D 1/4

, ~34!

where the term (n1e1 /nie i)
1/4 was studied extensively by

Allen and Longair@5#, Clark and Stoves@6#, and Wu and
Yang @7#. They found that the values of the term are ve
close to one in almost all electronic configurations of alm
all diatomic molecules. Therefore we assume in what follo
that the ratios i /s1 is equal to one for all values ofi.

The potential well depthse1 of most of the diatoms are
equal to 3–6 eV. The typical value of the energykT of par-
ticles in weakly ionized gases common in applicatio
ranges from about 0.2 to about 1 eV. Therefore, and beca
of the fact that the statistical weights of the higher repulsi
attractive states of the diatoms representing the collisi
under consideration are usually somewhat higher than
statistical weights of the lower repulsive-attractive states
the diatoms, the relationship~29! can be written as

^S&' 1
2 . ~35!

Subsequently, the average transport integrals~25! for the
repulsive-attractive interactions possible in typical bina
collisions are

^V i
~ l ,s!~T!&5ps1

2 f ~ l ,s!

2 S kT

2pm D 1/2S e1

kTD 1/3

. ~36!

III. THE TRANSPORT INTEGRALS
FOR REPULSIVE INTERACTIONS

Most of the repulsive potentials occurring in multiforc
collisions cannot be accurately approximated in the en
range of the interaction distance by a simple function.
addition, some~small! fraction of the potentials can be non
monotonic with respect tor. We ignore the nonmonotonic
potentials, and approximate the monotonic ones by so
convenient functions which reliably reproduce the potenti
in the vicinity of r'r o, j whereU j (r o, j )'kT †it was shown
@2# that the most important region of the repulsive interact
is whereU j (r'r o, j )'kT‡. These functions are

U j~r'r o, j !5
cj

r t j
, ~37!

wherecj and t j are the parameters of thej th repulsive po-
tential.

The transport integrals~3! for binary collisions driven by
a single (j th) repulsive potential~37! can be given as@8#
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V j
~ l ,s!~T!5S pkT

2m D 1/2S t jcj

kT D 2/t j

Aj
~ l !G@s122~2/t j !#,

~38!

where

Aj
~ l !5E

0

`

@12cosl x~b j !#b jdb j , ~39!

and

b j5S mg2

2t jcj
D 1/t j

. ~40!

The values of the integralsAj
( l ) are finite for all values oft j

greater than one~see Table I!.
The potential parameterscj can be obtained from the va

ues of the potentialsU j (r ) at one particular interaction dis
tance, say,r 5r o, j . Then, the constantcj in the function~37!
reproducing thej th repulsive potential is

cj5kTro, j
t j , ~41!

and the transport integral~38! can be written as

V j
~ l ,s!5pr o, j

2 S kT

2pm D 1/2

t j
2/t jAj

~ l !G~s1222/t j !. ~42!

Typically, the exponentst j of the potentials~37! approxi-
mating the repulsive potentials of binary collisions atr
;r o, j have relatively low~but rarely smaller than two! val-
ues. Whent j is not large, the product (r o, j /s1)2t j

2/t jAj
( l )G(s

1222/t j ) for different values ofj does not differ signifi-
cantly from the value of the product fort j53. Assuming this
value fort j , one obtains for the average value of the prod
in the vicinity of r o, j

K r o, j

s1
2 t j

2/t jAj
~ l !G~s1222/t j !L '4A3

~ l !G~s1 4
3 !, ~43!

whereA3
( l ) are given in Table I. Subsequently, the avera

transport integral~42! can be written as

^V j
~ l ,s!~T!&5ps1

2S kT

2pm D 1/2

4A3
~ l !G~s1 4

3 !. ~44!

TABLE I. The values of the integralsAj
( l ) given in Eq.~39!.

t j Aj
(1) Aj

(2)

2 0.398 0.528
3 0.311 0.353
4 0.298 0.308
6 0.306 0.283
8 0.321 0.279

10 0.333 0.278
12 0.346 0.279
14 0.356 0.280
` 0.500 0.333
t

e

IV. THE TRANSPORT INTEGRALS
AVERAGED OVER ALL INTERACTIONS

The average transport integral for atom-atom collisio
where many repulsive as well as repulsive-attractive inter
tion potentials are possible can be written as

^V~ l ,s!~T!&5^V i
~ l ,s!~T!&1^V j

~ l ,s!~T!&, ~45!

or, according to relationships~36! and ~44!, as

^V~ l ,s!~T!&5ps2S kT

2pm D 1/2F f ~ l ,s!

2 S e

kTD 1/3

14A3
~ l !G~s1 4

3 !G ,
~46!

where A3
(1)50.311 andA3

(2)50.353, f ( l ,s) are given in ex-
pressions~26! and ~27!, and where we denotede[e1 and
s[s1 as the parameters of the lowest repulsive-attrac
potential possible in the collision system.

V. THE TRANSPORT INTEGRALS
FOR RIGID-SPHERE INTERACTIONS

Transport cross sections for collision of two rigid spher
of radii R1 andR2 (s5R11R2) are

Q~1!5p~R11R2!2, ~47!

and

Q~2!5
2p

3
~R11R2!2, ~48!

and the corresponding transport integrals are

V~1,1!~T!5S pkT

2m D 1/2

~R11R2!2, ~49!

V~1,2!~T!53S pkT

2m D 1/2

~R11R2!2, ~50!

V~1,3!~T!512S pkT

2m D 1/2

~R11R2!2, ~51!

and

FIG. 2. The potential-averaged transport integrals^V (1,1)(T)&
for collision of two ground-state nitrogen atoms N(4S3/2

o ). Curve
LPS gives the results of the detailedab initio calculations of Levin,
Partridge, and Stallcop~Ref. @10#!, curve K gives the results of the
present work@Eq. ~46!#, and curve RS gives the results obtain
from the rigid-sphere model of the collision.
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V~2,2!~T!52S pkT

2m D 1/2

~R11R2!2, ~52!

where, as before,m is the reduced mass of the collidin
spheres.

VI. RESULTS AND DISCUSSION

The multiple-force transport integrals have been stud
for a long time~see Refs.@2,9,10#, and references therein!
but only recently have detailedab initio calculations and
experimental data made it possible to assemble quite c
plete and accurate sets of the potentials for multiple-fo
collision systems containing ground-state nitrogen and o
gen atoms and ions. Using the potentials, Levin, Partrid
and Stallcop made detailed semiclassical calculations of
average transport integrals for the systems. We compar
Figs. 2–7 the transport integrals~46! @when (l ,s)[(1,1)
and ~2,2!# for N(4S3/2

o )-N(4S3/2
o ), O(3P2)-O(3P2), and

N(4S3/2
o )-O(3P2) binary collisions with the correspondin

results of Levinet al.and, in the case of the O(3P2)-O(3P2)
collisions, with the results of Dalgarno and Smith@11#. We
also include in the figures the transport integrals obtai
assuming that the colliding atoms are rigid spheres with
collision diameter equal to the zero-potential distances of
the lowest repulsive-attractive potential. The average tra
port integralŝ V ( l ,s)(T)& of the present work and the ave
age transport integralss2V̄n,s(T) given in the tables in Ref
@10# are related as follows:

FIG. 3. The potential-averaged transport integrals^V (2,2)(T)&
for collision of two ground-state nitrogen atoms N(4S3/2

o ). The
meaning of the symbols is the same as in Fig. 2.

FIG. 4. The potential-averaged transport integrals^V (1,1)(T)&
for collision of two ground-state oxygen atoms O(3P2). The mean-
ing of the symbols is the same as in Fig. 2.
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V~2,2!~T!5S kT

2pm D 1/2 s2V̄n,s~T!

F~n,s!
, ~53!

where

F~n,s!5
4~ l 11!

p~s11!! @2l 112~21! l #
. ~54!

As can be seen in Figs. 2–7, the expression~46! gives a
reasonable first-order approximation to the average trans
integrals ^V ( l ,s)(T)& for the three collision systems.@The
agreement of the integrals~46! for ~l,s! other than~1,1! and
~2,2! with the correspondingab initio results for these sys
tems is similar to that seen in Figs. 2–7.# The accuracy of the
approximation in the temperature range from 300 to 10 0
K is not worse than about 15% for all the collisions. Su
accuracy is acceptable in studies of transport coefficient
many gases which are common in modern applications
where interaction potentials of some~or all! multiple-force
collisions are uncertain. One should notice that the rig
sphere model is an inappropriate representation of the
namics of multiple-force binary collisions.

It is difficult to say what the accuracy of the expressi
~46! is for collisions of atoms other than the nitrogen a
oxygen atoms because no complete and reliable sets o
potentials are available for interactions of the atoms.@Accu-
rate potentials for collision of two ground-state hydrog
atoms are well known, but the number of possible potent
is too small~only one repulsive-attractive and one repulsi
potential! to consider the H-H system for testing th

FIG. 5. The potential-averaged transport integrals^V (2,2)(T)&
for collision of two ground-state oxygen atoms O(3P2). Curve DS
gives the results of Dalgarno and Smith~Ref. @11#!. The meaning of
the other symbols is the same as in Fig. 4.

FIG. 6. The potential-averaged transport integrals^V (1,1)(T)&
for collision of a ground-state nitrogen atom N(4S3/2

o ) with a
ground-state oxygen atom O(3P2). The meaning of the symbols i
the same as in Fig. 2.
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accuracy of the relationship~46!.# However, judging on the
basis of the comparison shown in Figs. 2–7 and on the
that the relationship~46! was derived fromfirst principles,
the accuracy of the relationship~46! should not be worse
than 20% for most multiple-force collisions of neutrals
gases at temperatures below 10 000 K. The ratio of the
curacy of the expression~36! @an estimate of the contributio
of the repulsive-attractive potentials to the transport integ
^V ( l ,s)(T)&# to the accuracy of the expression~44! ~an esti-
mate of the contribution of the repulsive potentials to t
integrals! may differ from one collision system to anoth
because the expressions were derived using different ave
ing procedures. It seems, however, that the temperature
pendence of the ratio is such that at temperatures be
10 000 K the overall accuracy of the integrals~46! is always
within the margin~less than about 15%! which is acceptable
in studies of collisions driven by poorly understood multip
force potentials.

We assumed in the present work the Lennard-Jones
tentials ~5! for the repulsive-attractive atom-atom intera
tions, with the potential parameterse i ands i taken from the
Wigner-Witmer curves for the diatoms representing the c
lisions. Use of realistic model potentials other than the
tential ~5! would not lead to such a simple analytical expre
sion as the transport integral~46!. In addition, the large
volume of work@1# on gas transport coefficients in a broa
range of single-force interaction potentials~Lennard-Jones
Sutherland, Krieger, etc.! at temperatures below 2000
shows that all these potentials produce only small differen
in the transport coefficients as long as the potential par

FIG. 7. The potential-averaged transport integrals^V (2,2)(T)&
for collision of a ground-state nitrogen atom N(4S3/2

o ) with a
ground-state oxygen atom O(3P2). The meaning of the symbols i
the same as in Fig. 2.
ys
ct

c-

ls

ag-
e-
w

o-

l-
-
-

es
-

eterse and s have the same values. Therefore, express
~46! should give realistic estimates of the average transp
integrals for gases dominated by atom-atom collisions
temperatures below 2000 K as well as at substantially hig
temperatures~up to 10 000 K!, although it may be somewha
less accurate in the latter case. The accuracy of the exp
sion at these high temperatures cannot be verified beyond
comparisons of the formula with theab initio calculations
shown in Figs. 2–7 since no measurements of the trans
coefficients in gases at high temperatures are available. H
ever, one should keep in mind that at temperatures clos
10 000 K, the contribution of collisions involving charge
particles~a product of the gas ionization! will be at least as
important for accurate interpretation of the measurement
the contribution of the atom-atom collisions. Analysis of t
impact of the charged particles on transport properties
high-temperature gases is beyond the scope of this work,
it would be difficult to make because a general and accu
description of low-energy interactions of electrons and io
with atoms is not available. Also, the approach of the pres
work, based on superposition of the effects ofbinary colli-
sions, is not suitable for derivation of the transport integr
for long-range~many-body! interactions such as thee-e col-
lisions.

The transport integral~46! was derived from classical for
malism of collisional dynamics and the other transport in
grals shown in Figs. 2–7 were obtained from semiclass
formalism. These formalisms are expected to be quite ac
rate also at temperatures much lower than room tempera
However, at temperatures well below 50 K quantu
mechanical corrections to the integrals may be neces
@12#.

Finally, one should add that the approach of this work c
also be applied to multiple-force binary collisions of pa
ticles other than atoms~for example, a collision of an atom
with a molecule! if the needed interaction potentials for th
collisions are available.
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